Baik, saya kira cukup perkenalannya. Sekarang kita akan bahas bagaimana penyelesaiannya untuk fungsi ANDNOT (untuk penyelesaiannya fungsi lainnya, akan saya bahas jika ada request dari temen-temen)
X1
|
X2
|
X1 AND NOT(X2)
|
1
|
1
|
-1
|
1
|
0
|
1
|
0
|
1
|
-1
|
0
|
0
|
-1
|
α=1 , +teta = 0.2, -teta = -0.2
Epoch 1
x1
|
x2
|
1
|
NotYin
|
f(Yin)
|
t
|
ΔW1
|
ΔW2
|
Δb
|
W1
|
W2
|
b
|
0
|
0
|
0
|
|||||||||
1
|
1
|
1
|
0
|
0
|
-1
|
-1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
0
|
1
|
-2
|
-1
|
1
|
1
|
0
|
1
|
0
|
-1
|
0
|
0
|
1
|
1
|
-1
|
-1
|
-1
|
0
|
0
|
0
|
0
|
-1
|
0
|
0
|
0
|
1
|
0
|
0
|
-1
|
0
|
0
|
-1
|
0
|
-1
|
-1
|
Yin = x1.W1 + x2.W2 + b Yin
=(1*0)+(1*0)+0 Yin =
0
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= 0
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*1 ΔW1
= -1
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = -1
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= -1
W1 = W1(n-1) + ΔW1 W1=-1+-1 W1
= -1
W2 = W2(n-1) + ΔW2 W2=-1+-1 W2
= -1
b = b(n-1) + Δb b=-1+-1 b =
-1
Yin = x1.W1 + x2.W2 + b Yin
=(1*-1)+(0*-1)+-1 Yin =
-2
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*1*1 ΔW1 = 1
if f(Yin)=1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*1*0
ΔW2 =
0
if f(Yin)=1, then Δb=0 else Δb=α.t.1 Δb=1*1*1 Δb = 1
W1 = W1(n-1) + ΔW1 W1=0+1 W1
= 0
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=0+1 b
= 0
Yin = x1.W1 + x2.W2 + b Yin
=(0*0)+(1*-1)+0 Yin
= -1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=0+0 W1
= 0
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=0+0 b
= 0
Yin = x1.W1 + x2.W2 + b Yin
=(0*0)+(0*-1)+0 Yin
= 0
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= 0
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*0
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= -1
W1 = W1(n-1) + ΔW1 W1=0+0 W1
= 0
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=-1+-1 b =
-1
Epoch 2
x1
|
x2
|
1
|
NotYin
|
f(Yin)
|
t
|
ΔW1
|
ΔW2
|
Δb
|
W1
|
W2
|
b
|
0
|
-1
|
-1
|
|||||||||
1
|
1
|
1
|
-2
|
-1
|
-1
|
0
|
0
|
0
|
0
|
-1
|
-1
|
1
|
0
|
1
|
-1
|
-1
|
1
|
1
|
0
|
1
|
1
|
-1
|
0
|
0
|
1
|
1
|
-1
|
-1
|
-1
|
0
|
0
|
0
|
1
|
-1
|
0
|
0
|
0
|
1
|
0
|
0
|
-1
|
0
|
0
|
-1
|
1
|
-1
|
-1
|
Yin = x1.W1 + x2.W2 + b Yin
=(1*0)+(1*-1)+-1 Yin =
-2
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*1 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=0+0 W1
= 0
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=-1+0 b
= -1
Yin = x1.W1 + x2.W2 + b Yin
=(1*0)+(0*-1)+-1 Yin =
-1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*1*1 ΔW1
= 1
if f(Yin)=1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*1*0
ΔW2 =
0
if f(Yin)=1, then Δb=0 else Δb=α.t.1 Δb=1*1*1 Δb = 1
W1 = W1(n-1) + ΔW1 W1=1+1 W1
= 1
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=0+1 b
= 0
Yin = x1.W1 + x2.W2 + b Yin
=(0*1)+(1*-1)+0 Yin
= -1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=1+0 W1
= 1
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=0+0 b
= 0
Yin = x1.W1 + x2.W2 + b Yin
=(0*1)+(0*-1)+0 Yin
= 0
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= 0
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*0
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= -1
W1 = W1(n-1) + ΔW1 W1=1+0 W1
= 1
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=-1+-1 b =
-1
Epoch 3
x1
|
x2
|
1
|
NotYin
|
f(Yin)
|
t
|
ΔW1
|
ΔW2
|
Δb
|
W1
|
W2
|
b
|
1
|
-1
|
-1
|
|||||||||
1
|
1
|
1
|
-1
|
-1
|
-1
|
0
|
0
|
0
|
1
|
-1
|
-1
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
2
|
-1
|
0
|
0
|
1
|
1
|
-1
|
-1
|
-1
|
0
|
0
|
0
|
2
|
-1
|
0
|
0
|
0
|
1
|
0
|
0
|
-1
|
0
|
0
|
-1
|
2
|
-1
|
-1
|
Yin = x1.W1 + x2.W2 + b Yin
=(1*1)+(1*-1)+-1 Yin =
-1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*1 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=1+0 W1
= 1
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 = -1
b = b(n-1) + Δb b=-1+0 b
= -1
Yin = x1.W1 + x2.W2 + b Yin
=(1*1)+(0*-1)+-1 Yin = 0
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= 0
if f(Yin)=1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*1*1 ΔW1
= 1
if f(Yin)=1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*1*0
ΔW2 =
0
if f(Yin)=1, then Δb=0 else Δb=α.t.1 Δb=1*1*1 Δb = 1
W1 = W1(n-1) + ΔW1 W1=2+1 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=0+1 b
= 0
Yin = x1.W1 + x2.W2 + b Yin
=(0*2)+(1*-1)+0 Yin
= -1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb = 0
W1 = W1(n-1) + ΔW1 W1=2+0 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=0+0 b
= 0
Yin = x1.W1 + x2.W2 + b Yin
=(0*2)+(0*-1)+0 Yin
= 0
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= 0
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*0
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= -1
W1 = W1(n-1) + ΔW1 W1=2+0 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-1+0 W2 =
-1
b = b(n-1) + Δb b=-1+-1 b =
-1
Epoch 4
x1
|
x2
|
1
|
NotYin
|
f(Yin)
|
t
|
ΔW1
|
ΔW2
|
Δb
|
W1
|
W2
|
b
|
2
|
-1
|
-1
|
|||||||||
1
|
1
|
1
|
0
|
0
|
-1
|
-1
|
-1
|
-1
|
1
|
-2
|
-2
|
1
|
0
|
1
|
-1
|
-1
|
1
|
1
|
0
|
1
|
2
|
-2
|
-1
|
0
|
1
|
1
|
-3
|
-1
|
-1
|
0
|
0
|
0
|
2
|
-2
|
-1
|
0
|
0
|
1
|
-1
|
-1
|
-1
|
0
|
0
|
0
|
2
|
-2
|
-1
|
Yin = x1.W1 + x2.W2 + b Yin
=(1*2)+(1*-1)+-1 Yin = 0
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= 0
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*1 ΔW1
= -1
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = -1
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= -1
W1 = W1(n-1) + ΔW1 W1=1+-1 W1 =
1
W2 = W2(n-1) + ΔW2 W2=-2+-1 W2
= -2
b = b(n-1) + Δb b=-2+-1 b =
-2
Yin = x1.W1 + x2.W2 + b Yin
=(1*1)+(0*-2)+-2 Yin =
-1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*1*1 ΔW1 = 1
if f(Yin)=1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*1*0
ΔW2 =
0
if f(Yin)=1, then Δb=0 else Δb=α.t.1 Δb=1*1*1 Δb = 1
W1 = W1(n-1) + ΔW1 W1=2+1 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-2+0 W2 =
-2
b = b(n-1) + Δb b=-1+1 b
= -1
Yin = x1.W1 + x2.W2 + b Yin
=(0*2)+(1*-2)+-1 Yin =
-3
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=2+0 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-2+0 W2 =
-2
b = b(n-1) + Δb b=-1+0 b
= -1
Yin = x1.W1 + x2.W2 + b Yin
=(0*2)+(0*-2)+-1 Yin =
-1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*0
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=2+0 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-2+0 W2 =
-2
b = b(n-1) + Δb b=-1+0 b
= -1
Epoch 5
x1
|
x2
|
1
|
NotYin
|
f(Yin)
|
t
|
ΔW1
|
ΔW2
|
Δb
|
W1
|
W2
|
b
|
2
|
-2
|
-1
|
|||||||||
1
|
1
|
1
|
-1
|
-1
|
-1
|
0
|
0
|
0
|
2
|
-2
|
-1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
2
|
-2
|
-1
|
0
|
1
|
1
|
-3
|
-1
|
-1
|
0
|
0
|
0
|
2
|
-2
|
-1
|
0
|
0
|
1
|
-1
|
-1
|
-1
|
0
|
0
|
0
|
2
|
-2
|
-1
|
Yin = x1.W1 + x2.W2 + b Yin
=(1*2)+(1*-2)+-1 Yin =
-1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*1 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=2+0 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-2+0 W2 =
-2
b = b(n-1) + Δb b=-1+0 b
= -1
Yin = x1.W1 + x2.W2 + b Yin
=(1*2)+(0*-2)+-1 Yin = 1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= 1
if f(Yin)=1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*1*1 ΔW1 = 0
if f(Yin)=1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*1*0
ΔW2 =
0
if f(Yin)=1, then Δb=0 else Δb=α.t.1 Δb=1*1*1 Δb = 0
W1 = W1(n-1) + ΔW1 W1=2+0 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-2+0 W2 =
-2
b = b(n-1) + Δb b=-1+0 b
= -1
Yin = x1.W1 + x2.W2 + b Yin
=(0*2)+(1*-2)+-1 Yin =
-3
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*1
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=2+0 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-2+0 W2 =
-2
b = b(n-1) + Δb b=-1+0 b
= -1
Yin = x1.W1 + x2.W2 + b Yin
=(0*2)+(0*-2)+-1 Yin =
-1
if Yin>0.2, then f(Yin)=1 else f(Yin)=-1 f(Yin)
= -1
if f(Yin)=-1, then ΔW1=0 else ΔW1=α.t.x1 ΔW1=1*-1*0 ΔW1
= 0
if f(Yin)=-1, then ΔW2=0 else ΔW2=α.t.x2 ΔW2=1*-1*0
ΔW2 = 0
if f(Yin)=-1, then Δb=0 else Δb=α.t.1 Δb=1*-1*1 Δb
= 0
W1 = W1(n-1) + ΔW1 W1=2+0 W1
= 2
W2 = W2(n-1) + ΔW2 W2=-2+0 W2 =
-2
b = b(n-1) + Δb b=-1+0 b
= -1
Yin = x1.W1
+ x2.W2 + 1.b
Yin = X1.2 + X2.-2
+ -1
Yin= 2X1 - 2X2
- 1
Fungsi Matematika:
·
2X1 - 2X2
– 1 >= 0.2
2X1 - 2X2 – 1.2 = 0
X1 =0.6 X2
= 0
X1 =0 X2 = -0.6
·
2X1 - 2X2
– 1 <= -0.2
2X1 - 2X2 – 0.8 = 0
X1 =0.4 X2
= 0
X1 =0 X2
= -0.4
No comments:
Post a Comment